Molecular Testing in Breast Cancer: An Oncologist's Perspective

Adam L. Cohen, MD, MS Assistant Professor Huntsman Cancer Institute, University of Utah Adam.cohen@hci.utah.edu

Park City AP Pathology Update February 9, 2015

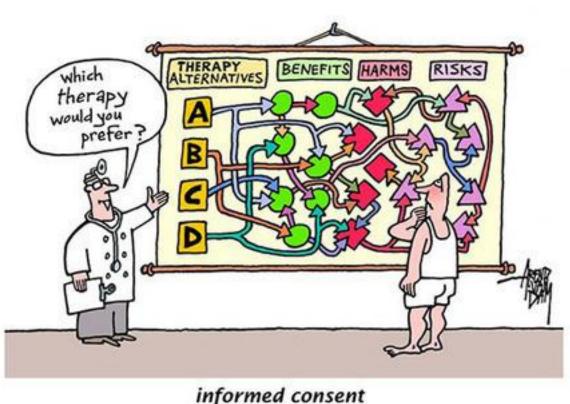
Disclosures

- I have no conflicts of interest to disclose.
- The views expressed here are mine alone and may not represent the views of the University of Utah, the State of Utah, or the Huntsman Cancer Institute

Objectives

- Understand how ER, PR, and HER2 testing are used in treatment decisions
- Recognize the options for genomic profiling of breast tumors
- Understand how genomic profiling is used in adjuvant treatment decisions
- Understand the potential roles for genomic profiling in metastatic treatment decisions

Decisions to be made

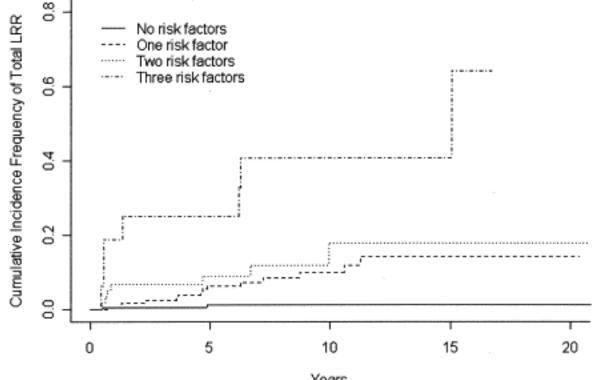

- Presentation
 - Surgery first or chemotherapy first?
 - Which neoadjuvant therapy to use?
- After surgery
 - What is the local recurrence risk?
 - What is the distant recurrence risk?
 - Is adjuvant chemotherapy needed, and if so which one?
 - Is adjuvant hormone therapy needed, and if so which one?
 - Is adjuvant biologic therapy needed?
- Metastatic disease
 - How long will she live?
 - What therapy to use when?

Options

- NCCN lists:
 - 21 adjuvant/neoadjuvant chemotherapies
 - 4 adjuvant endocrine therapies
 - 11 metastatic endocrine therapies
 - 34 metastatic chemotherapies
- How do we decide?

Decisions after surgery

- What is the local/distant recurrence risk?
 - Combination of biology and clinical factors
 - Clinical factors
 - Age
 - Size of primary tumor
 - Node positivity
 - Margins**
 - Biology
 - Estrogen receptor presence and activation
 - HER2 amplification
 - Proliferation
 - Grade
 - Lymphovascular invasion**



Local Recurrence after Mastectomy

- Margins $\geq 2mm$
- Premenopausal
- Size > 2cm
- Lymphovascular invasion

Total Loco-Regional Recurrence Rates by Number of Risk Factors

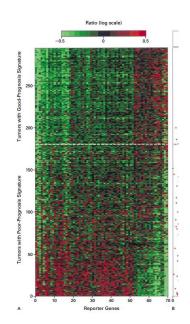
Years

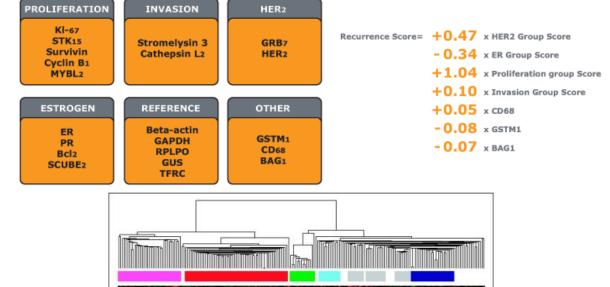
Decisions after surgery

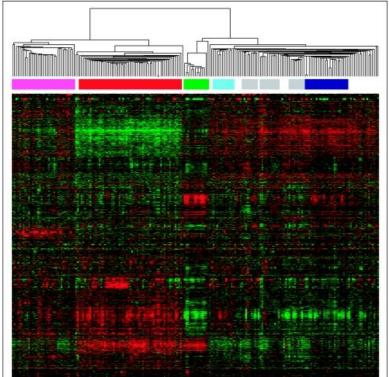
- What is the local/distant recurrence risk?
 - Combination of biology and clinical factors
 - Clinical factors
 - Age
 - Size of primary tumor
 - Node positivity
 - Margins**
 - Biology
 - Estrogen receptor presence and activation
 - HER2 amplification
 - Proliferation
 - Grade
 - Lymphovascular invasion**

How do we measure estrogen receptor presence and activation?

• Presence

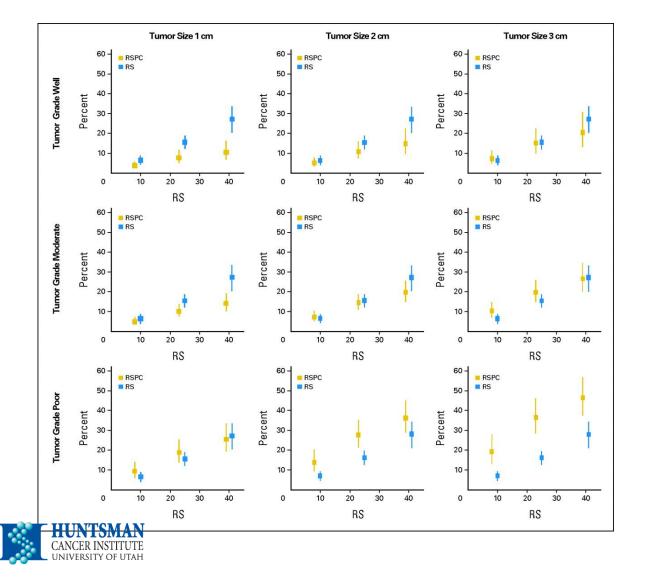

- Detected by immunohistochemistry
- Number of positive cells and intensity are both important
- Increasing ER by 1% decreases relapse by ~3%
- Activation
 - PR level
 - Gene expression analysis





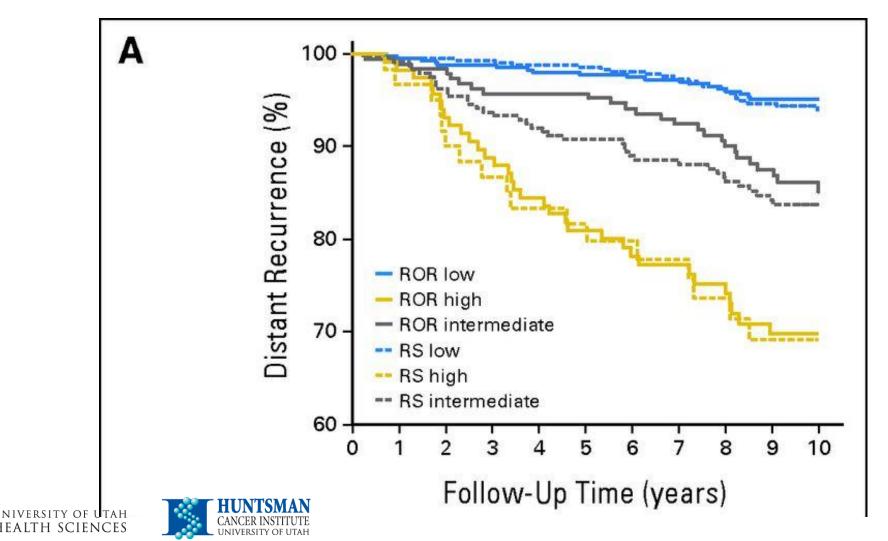
Available gene expression tests

- Oncotype Dx recurrence score
- Mammaprint
- PAM50/Prosigna
- Breast Cancer Index


Features of gene expression tests

Feature	Oncotype	MammaPrint	Prosigna	Breast Cancer Index
Number of Genes	21	70	50	7
Able to be done on FFPE	Yes	Yes	Yes	Yes
Output	Score (0-100)	Binary (High/Low)	Score (0-100)	Score (0-10)
Population	ER-positive, HER2- negative Node negative (>1 validation) Node positive (1 validation)	<4 lymph nodes	ER-positive Node negative or node positive	ER-positive, node negative
Incorporates clinical variables	Calculator on website integrates age, size, and grade	No	Score incorporates tumor size	No
Predictive of chemotherapy benefit	Yes	Yes	Unknown	Unknown

Age, Size, and grade still matter


UNIVERSITY OF UTAH

HEALTH SCIENCES

Gene expression tests give similar data

JCO August 1, 2013 vol. 31 no. 22 2783-2790

What about immunohistochemistry?

• IHC4

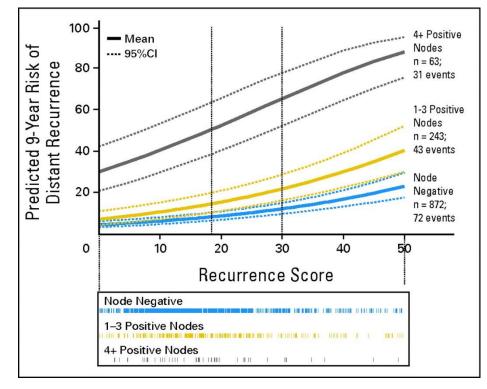
- Combines quantitative assessments of ER, PR, Ki-67, and HER2
- Compares favorably to gene expression tests
- Not clear how to lab-to-lab variability affects score
- Mammastrat
 - Five gene score
 - Prognostic, but not clearly predictive
 - Has not been compared to gene expression based assays
 - Benefit in premenopausal women not established

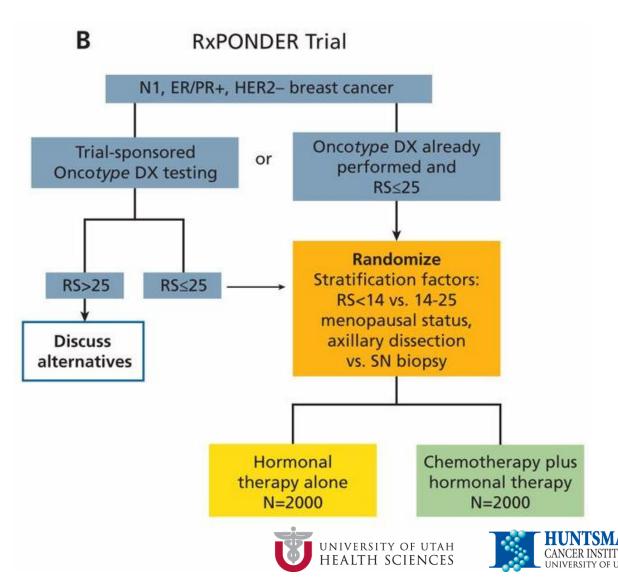
Table 3. Examples of Predicted 9-Year Distant Recurrence Probabilities for
25th and 75th Percentiles of the IHC4 and GHI-RS Scores for Different
Grades and Nodal Status for a Women Age \geq 65 Years With a 1- to 2-cm
Tumor Treated With Anastrozole

Grade		Poor or Undifferentiated		Moderate		Well Differentiated	
Nodal Status	Percentile Score	IHC4	GHI-RS	IHC4	GHI-RS	IHC4	GHI-RS
Node Negative	25	7.1	8.3	4.8	5.8	2.2	2.5
	75	13.1	12.1	8.9	8.4	4.2	3.6
Node Positive	25	10.4	12.1	7.1	8.4	3.3	3.6
	75	18.8	17.3	13.0	12.2	6.2	5.3
Abbreviations: GHI-RS, Genomic Health recurrence score; IHC4, four immu-							

Abbreviations: GHI-RS, Genomic Health recurrence score; IHC4, four immunohistochemical markers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67).

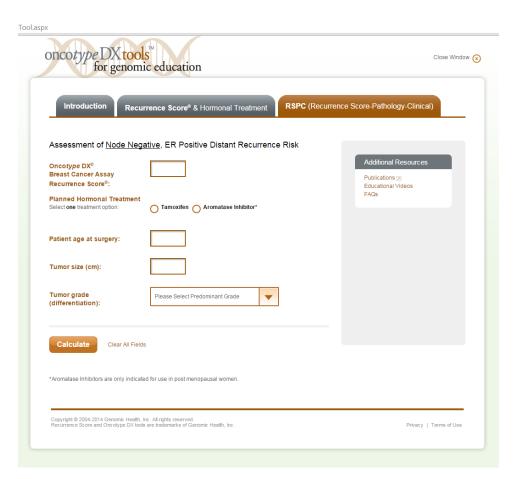
Mammostrat Biomarkers


Protein Markers	Function		
953 HTF9C	Cell Cycle Regulation		
CEACAM5	Differentiation		
NDRG1	Нурохіа		
SLC7A5	Nutrient Supply		



What about node-positive ER-positive disease

• Historically and per NCCN, chemotherapy is indicated.



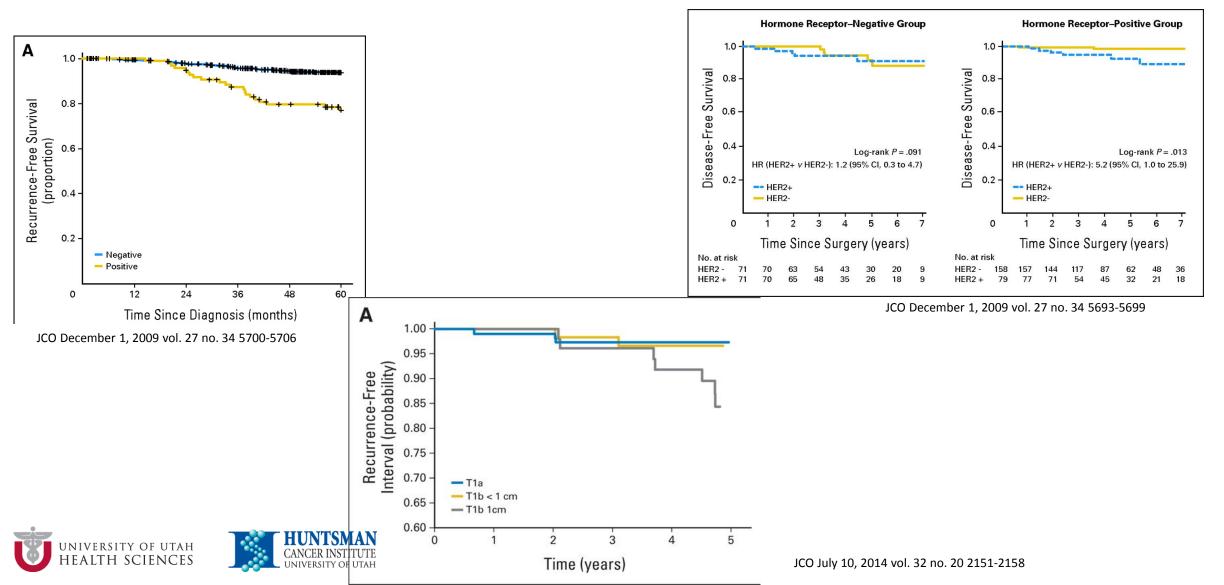
Dowsett M et al. JCO 2010;28:1829-1834

My approach in ER-positive, HER2-negative breast cancer

- > 4 nodes -> Chemotherapy followed by endocrine therapy
- Node-negative
 - Estimate range of possible recurrence risks based on clinical factors and recurrence scores
 - Determine chemotherapy based on recurrence risk and potential benefit from chemotherapy
- 1-3 nodes
 - Agonize
 - Consider enrolling on RxPonder
 - Recommend chemotherapy pending RxPonder results, but if gene expression test is low risk, strength of recommendation depends on clinical factors

Gene expression does not replace traditional HER2 testing

		RT-PCR in OncotypeDx				
		Equivocal	Negative	Positive	Total	
IHC/FISH	Equivocal	0	23	0	23	
	Negative	5	779	0	784	
	Positive	12	14	10	36	
	Total	17	816	10	843	



Choice of regimen for HER2-positive cancers is based on clinical factors

- No test for withholding trastuzumab based on biologic factors
- Since trastuzumab must be given with chemotherapy, want to limit chemotherapy exposure in low risk women
- Node-positive -> chemotherapy plus trastuzumab plus pertuzumab
- > 3 cm, node negative -> chemotherapy plus trastuzumab plus pertuzumab
- 1-3 cm -> taxol and trastuzumab
- < 1cm -> controversial

Small HER2-positive cancers

Current Clinical Dilemmas

- Adjuvant chemotherapy for clinically high risk but biologically chemotherapy-resistant tumors?
- Neoadjuvant endocrine therapy for very estrogen-sensitive tumors?
- Can we predict which endocrine therapy to use in the adjuvant setting?
- What size cutoff should be used for anti-HER2 therapy?
- Utility of adjuvant endocrine therapy in tumors with low ERpositivity?

Decisions at presentation

- Is therapy needed prior to surgery for localized disease?
 - Easy yes
 - Clinical T4 or Clinical N2
 - Why?
 - Surgeon needs easier surgery
 - Maximal therapy is needed
 - Anthracycline, taxane, trastuzumab, pertuzumab
 - Easy no
 - Anyone who may not need adjuvant therapy
 - Tumor < 1cm
 - Clinically node negative ER-positive
 - ER, PR, HER2 can't be done on biopsy

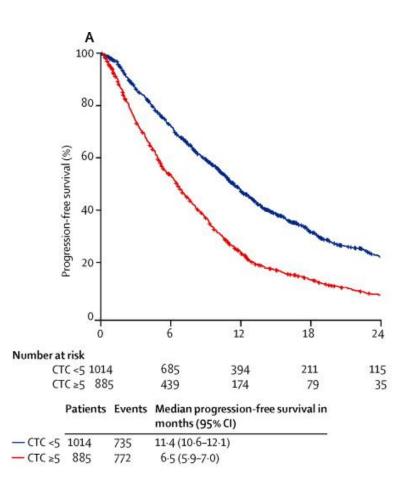
Decisions at presentation

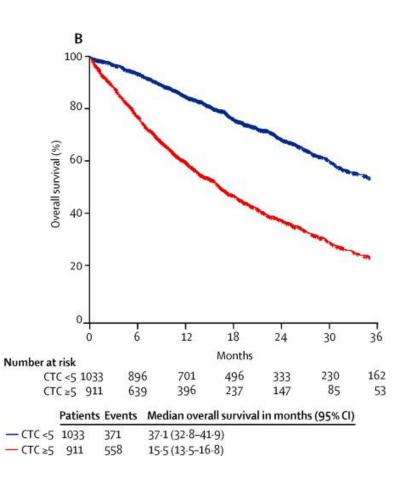
- Is therapy needed prior to surgery for localized disease?
 - Harder decisions
 - Adjuvant therapy will definitely be needed but no clear advantage to preoperative therapy
 - Triple-negative >1 cm
 - HER2-positive > 1 cm
 - Node-positive Triple-negative or HER2-positive
 - If I know what regimen is needed, based on clinical factors, comorbidities, or schedule, then may do preoperative therapy.

Metastatic breast cancer

- How long will she live?
- What therapy to use when?

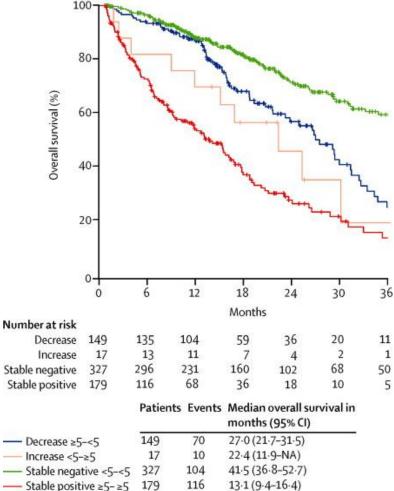
Metastatic breast cancer

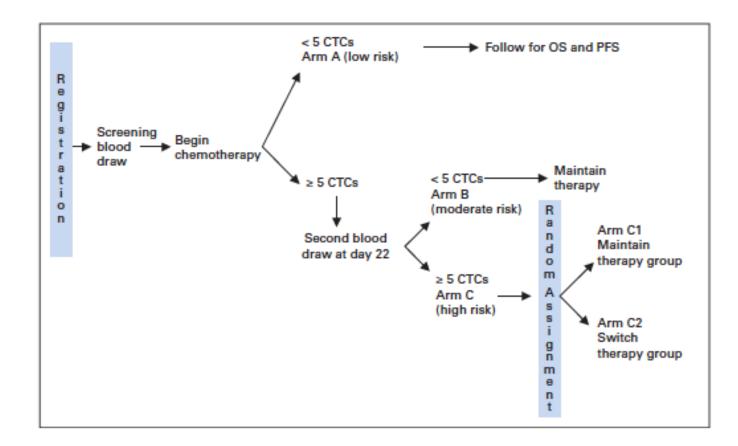

- Prognosis is affected by:
 - Clinical factors
 - Location of metastases
 - Performance status
 - Prior therapies
 - Biologic factors
 - Histology
 - Molecular subtype
 - Location of metastases



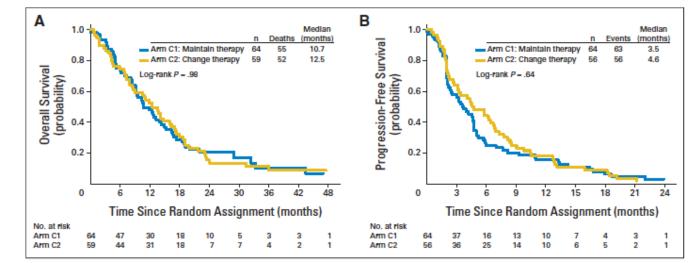
Circulating Tumor Cells (CTCs)

- Add prognostic information to clinical variables
- Change in AUC is ~0.02



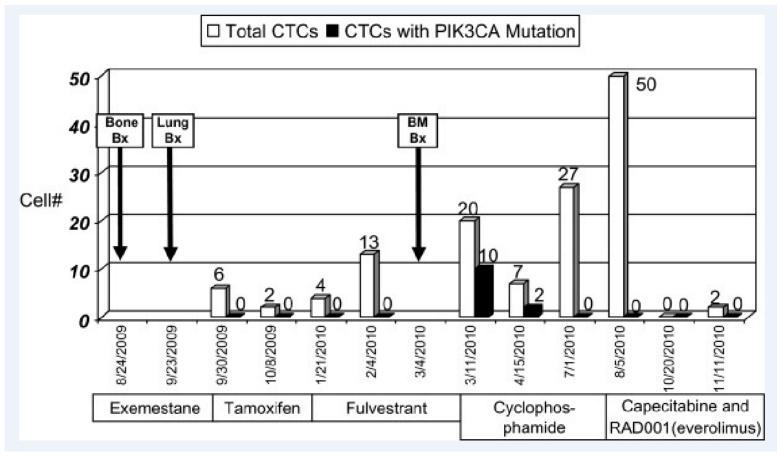

Change in CTC count is prognostic

S0500: Does changing therapy base on CTC affect survival



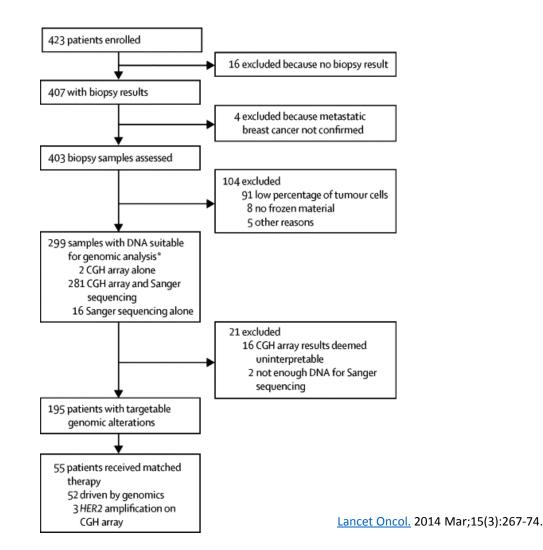
S0500 results

- Changing therapy for women with unchanged CTCs did not improve PFS or OS
- Why?
 - Underpowered study
 - Therapy options are similar in mechanism
 - Women tend to see sequentially all classes of drugs



Can blood tests be used to identify targets for therapy?

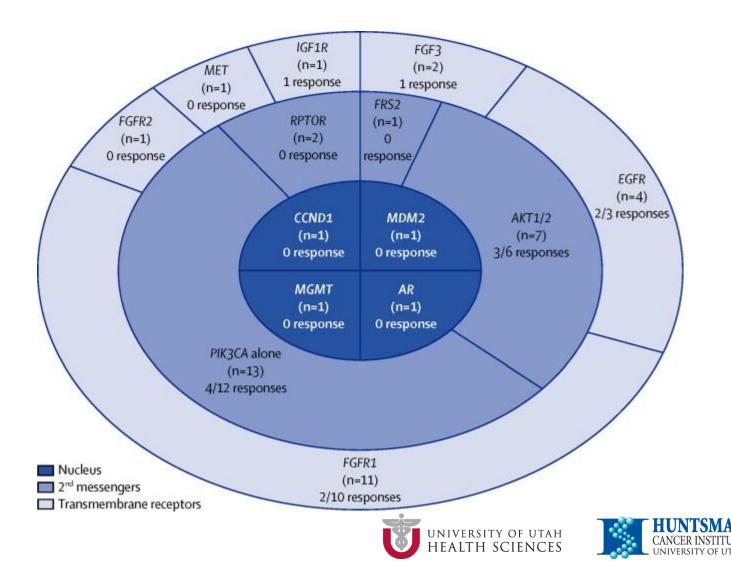
- Mutations can be found in both CTCs and ctDNA
- Is knowledge of these mutations useful?


Can CTCs be used to identify targets for therapy?

- Targets in CTCs may not reflect the full biology
 - Phase 2 trial of lapatinib in women with HER2-positive CTCs but HER2negative tumors
 - 7 of 96 women screened
 - No responses, 1 stable disease

Molecular Profiling to Determine Treatment

- SAFIR01/UNICANCER trial
- Feasibility study to see how often targeted treatments could be identified for women with metastatic breast cancer



SAFIR01: A mixed success

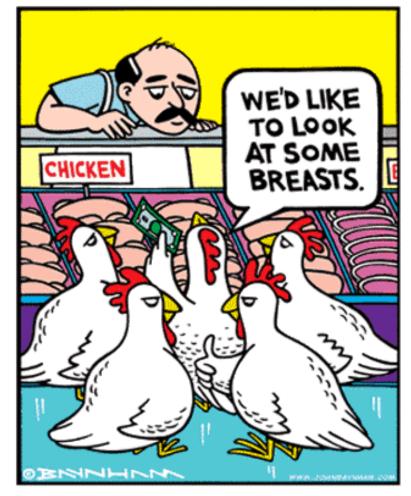
- Issues with targeting somatic genetic alterations
 - Context matters
 - Current drugs are suboptimal
 - 50% of women don't have targetable alterations

- Which of the following is a predictor for distant relapse of early ERpositive breast cancer independent of molecular features?
- A. Grade
- B. Margin size
- C. Ki-67
- D. Germline BRCA status

- RT-PCR testing for HER2 status in early breast cancer:
- A. Has equivalent accuracy to FISH or immunohistochemistry
- B. Is more likely to be called positive than FISH
- C. Should not be used to withhold anti-HER2 therapy
- D. Can be used when FISH is equivocal to decide whether to give anti-HER2 therapy

- The presence of >5 circulating tumor cells/ml of blood in a woman with metastatic breast cancer:
- A. Predicts increased sensitivity to chemotherapy
- B. Decreases median overall survival by about 50%
- C. Can be used to determine HER2 status
- D. Determines the need for combination chemotherapy

- Multigene mutation profiling of metastatic breast cancer:
- A. Can detect actionable mutations in the vast majority of women
- B. Can be performed on FFPE from most tumors
- C. Leads to a greater than 50% response rate from targeted therapies
- D. Works because targeted drugs will have the same effect regardless of histology


- Multigene gene expression tests are most helpful for:
- A. A 50 year-old woman with a 3cm, ER-positive, PR-positive, HER2negative invasive ductal cancer and negative nodes
- B. An 85 year-old wheelchair bound woman with a 3cm, ER-positive invasive ductal cancer and negative nodes
- C. A 40 year-old woman with a 3 cm, ER-negative, PR-negative, HER2negative invasive ductal cancer and negative nodes
- D. A 60 year-old woman with a 3 cm, ER-positive invasive ductal cancer and 5 positive lymph nodes
- E. A 55 year-old woman with a 3 cm, ER-positive, PR-positive, HER2-positive invasive ductal cancer with negative lymph nodes

Thank you

• Questions?

©2006 T-SHIRTHUMOR.COM

